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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL I\EXORANDUM x-126 

EFFECTS OF THREE SPANWISE TWIST VARIATIONS 

ON TRE LONGITUDINAL AER0DYNfiU.C CHARACTERISTICS OF A 

THIN 45' SWEPTl3ACK HIGHLY TAPERED WING AT 

TRANSONIC SPEEDS* 

By John P. Mugler, Jr. 

SUMMARY 

Tests were conducted a t  transonic speeds on four wings: an untwisted 
wing t o  serve as a reference, and wings with l inear ,  quadratic, and cubic 
t w i s t  var ia t ions across the  span. 
a t  10 percent of t he  semispan and 6' washout a t  t h e  t i p .  
ered a Mach number range from 0.80 t o  1.20 and angle-of-attack range from 
-bo t o  20'. 
phere which corresponded t o  Reynolds numbers of about 1 .4  x 106 and 
2.8 x lo6 based on t h e  wing mean aerodynamic chord, respectively.  
wings have an aspect r a t i o  of 4, taper r a t i o  of 0.15, and 45' sweepback 
of t h e  quarter-chord l i ne .  The wings were cambered and had a thickened 
root sec t  ion. 

A l l  of the  twisted w i n g s  had 0' t w i s t  
The tes ts  cov- 

Data were taken a t  stagnation pressures of 0.5 and 1.0 atmos- 

The 

W i n g  t w i s t  produced a pitching-moment s h i f t  a t  low l i f t  i n  the  
direct ion t o  reduce trim drag. 
increase i n  the  minimum drag coefficient over t he  Mach number range 
which resul ted i n  decreases i n  the untrimmed maximum l i f t -drag  r a t i o  

The t w i s t  w a s  a l so  responsible f o r  an 

INTROIKTCTION 

A research program has been conducted a t  the  langley Research Center 
t o  determine the  loads due t o  w i n g  t w i s t  a t  transonic and l o w  supersonic 
speeds. 
transonic speeds: 
with l inear ,  quadratic, and cubic variations of t w i s t  across the span. 

A s  pa r t  of t h i s  program, tests have been made on four wings a t  
an untwisted wing t o  serve as a reference, and w i n g s  



2 

1) 
Pressure measurements on these wings have been presented in references 1 6/ 

to 4. The force measurements on these wings are presented herein. 

SYMBOLS 

aspect ratio 

free-stream Mach number 

Lift lift coefficient, - 
qs 

drag coefficient, Drag 
qs 

Pitching moment about c/4 
pitching-moment coefficient , 

qSE 

Normal force 
normal-force coefficient, 

qs 

Axial force 

qs 
axial-force coefficient, 

maximum value of lift-drag ratio 

lift coefficient at ( L/D)- cL, ( L/D)- 

minimum drag coefficient ‘D,min 

S total wing area 

b wing span 

Y 

C wing mean aerodynamic chord 

spanwise distance measured from body center line 

R Reynolds number based on wing mean aerodynamic chord 
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p t  stagnation pressure, a t m  

free-stream dynamic pressure 

angle of a t tack  of body center l i n e  

3 

aeroe las t ic  twis t  angle (angle of a t tack of wing s t a t i o n  
minus angle of attack of wing-body center l i n e )  

b u i l t - i n  t w i s t  angle 

APPARATUS 

Tunnel 

The investigation was conducted i n  the  Langley 8-foot transonic 
pressure tunnel. 
cross section. The upper and lower walls a re  s lo t t ed  longitudinally t o  
allow continuous operation through the transonic speed range with negli- 
g ib le  e f f ec t s  of choking and blockage. During t h i s  investigation, the  
tunnel was operated a t  stagnation pressures of approximately 0.5 and 
1.0 atmosphere. The dewpoint of the tunnel air  was controlled and was 
kept constant at  approximately Oo F. 
tunnel a i r  w a s  automatically controlled and w a s  kept constant and uniform 
acrcss  the tunnel a t  123' F. 
temperature i n  t h i s  manner minimized humidity e f fec ts .  Details of t h e  
t e s t  section a re  presented i n  reference 5 .  

The test  sect ion of t h i s  f a c i l i t y  is  rectangular i n  

The stagnation temperature of the 

Control of both dewpoint and stagnation 

Models 

Each w i n g  has a sweepback of 45' of t he  0 . 2 5 ~  l ine ,  an aspect r a t i o  
of 4, and a taper  r a t i o  of 0.15. 
thickness from an NACA 65~206 section with 
NACA 65A203 section with 
s ta t ion .  The a i r f o i l  section remains constant from the 50-percent- 
semispan s t a t ion  t o  the t i p .  
presented i n  reference 1. 
cent of the  semispan t o  the t i p .  The t w i s t  varied l inear ly ,  quadratically,  
and cubicly, respectively, on the three wings. In each case the t w i s t  was 
0' a t  the 10-percent-semispan s ta t ion and 6 O  a t  the t i p .  
were twisted about the leading edge i n  planes p a r a l l e l  t o  t he  model plane 
of symmetry with the t r a i l i n g  edges up; therefore,  the t i p s  a re  a t  a 
lower angle of a t tack than the  wing-body center l i ne .  
were constructed of s t e e l  and tes ted a s  m i d w i n g  configurations i n  com- 
binat ion with a cent ra l  body. 

The w i n g  section var ies  l i nea r ly  i n  
a = 0 a t  the  root t o  an 

a = 0.8 (modified) at  the 50-percent-semispan 

Streamwise ordinates f o r  t h i s  wing a re  
Twist was b u i l t  i n to  three wings from 10 per- 

The sections 

The four wings 

Ordinates f o r  t h i s  cen t ra l  body are 
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presented i n  tab le  I. The shape of t h i s  body would be ident ica l  t o  the 
pressure body used i n  references 1 t o  4 except t ha t  t he  base w a s  cut o f f  
a t  s ta t ion  35.3 inches t o  accommodate an in te rna l  strain-gage balance. 
Details of t h e  wing-body conbinations are presented i n  f igure 1 and the 
b u i l t - i n  wing t w i s t  character is t ics  are  presented i n  table 11. 

. 
4 

A 

The model support s t ing extended from the  base of the body and w a s ,  
i n  turn,  attached t o  the  cent ra l  support system of the tunnel. This 
support system kept the  
out the  angle-of-attack 

Tests were made a t  

model near the center l i n e  of t he  tunnel through- 
range. 

T 

TESTS 

Mach numbers from 0.80 t o  1.20 a t  tunnel stagna- 
t i o n  pressures of approximately 0.5 and 1.0 atmosphere. A t  Mach numbers 
between 1.03 and 1.13, boundary ref lected disturbances struck the model, 
so t h a t  no data were recorded i n  t h i s  Mach number range. A t  a stagnation 
pressure of 0 .5  atmosphere the angle-of-attack range extended generally 
from -4' t o  20'; a t  a stagnation pressure of 1.0 atmosphere, the angle- 
of-attack range generally extended f r o m  -4' t o  12'. 

Transition s t r i p s  were fixed on the model during a l l  of the  t e s t s .  
The s t r ip s  were about 0.10 inch wide and were formed by sprinkling 
No. 120 carborundum grains on a p l a s t i c  adhesive. The s t r i p s  extended 
from the wing-body juncture t o  the wing t i p  a t  10 percent of the  loca l  
chord on the upper and lower wing surfaces and formed a r ing around the 
body a t  10 percent of the  body length. 

The Reynolds number, based on a mean aerodynamic chord length of 
8.42 inches, varied over the Mach number range from about 1.3 x 106 t o  
1.5 x 106 during tests a t  0.5 atmosphere and from about 2.6 x 106 t o  
2.9 X lo6 during t e s t s  a t  1.0 atmosphere. The dynamic pressure varied 
over t he  Mach number range from about 310 t o  435 pounds per square foot  
during t e s t s  a t  0.3 atmosphere and from about 620 t o  880 pounds per 
square foot during tes ts  a t  1.0 atmosphere. (See f i g .  2 . )  

MEASUREMENTS AND ACCURACY 

I The pressure wings of references 1 t o  4 were f i t t e d  t o  a body which 
housed a three-component in te rna l  strain-gage balance. The pressure 
o r i f i c e s  i n  the wing were not hooked up during these force t e s t s .  A 
study of factors  affect ing the accuracy of the  resu l t s ,  such as balance 
accuracy, repea tab i l i ty  of data, and dynamic-pressure var ia t ions 
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indicates  t h a t  the measured coefficienks a re  accurate within the fo l -  
lowing l i m i t s :  

0.80 f o  .028 +0.0011 fO .0054 I 1.20 I k.019 

The angle of a t tack of t he  model was measured with a strain-gage 
a t t i t u d e  t ransmit ter  mounted i n  the nose of the  model and i s  estimated 
t o  be accurate within f0.2'. 

Calibrations of the  tunnel t e s t  section indicate  that l o c a l  devia- 
t i ons  from the average free-streamMach number a re  of the order of 
*O.OO5 at  subsonic speeds. With increases i n  Mach number, these devia- 
t i ons  increase but do not exceed f O . O 1 O  i n  the  region of the wing at 
M = 1.20. 
center of t h e  test  sect ion are presented i n  reference 5. 
free-stream Mach number was held t o  within kO.OO5 of the  nominal values 
shown on the  figures. 

Several representative Mach number d is t r ibu t ions  along the  
The average 

The stagnation pressures of 1,058 and 2,116 pounds per square foot  
have been designated 0.5 and 1.0 atmosphere, respectively,  throughout 
t h i s  study. During the t e s t s ,  the  stagnation pressure was held t o  within 
f10 pounds per square foot  during t e s t s  a t  0.5 atmosphere and t o  w i t h i n  
f20 pounds per square foot during t e s t s  a t  1.0 atmosphere. 

CORRECTIONS 

No corrections have been applied t o  the  data f o r  boundary-interference 
e f f ec t s .  A t  subsonic speeds, the s lo t ted  t e s t  sect ion minimized boundary- 
interference e f f ec t s  such as blockage and boundary-induced upwash. 

No corrections have been applied t o  the  data f o r  aeroe las t ic  e f f ec t s .  
The aeroe las t ic  wing-twist angles have been computed f o r  these wings 
using measured influence coeff ic ients  i n  conjunction with pressure data. 
(See refs. 1 t o  4 . )  Figure 3 presents aeroe las t ic  t w i s t  angles Lb: near 

/ 

"he drag data have been adjusted t o  the  condition of free-stream 
s t a t i c  pressure a t  the model base. 
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RESULTS 

The force and moment charac te r i s t ics  of t he  wing-body combinations 
(untwisted, l i nea r ly  twisted, quadratically twisted, and cubicly twisted 
wings) are  presented i n  f igures  4 t o  7, respectively.  Tabulated coeffi-  
cients,  about both the body and s t a b i l i t y  axes f o r  the  four configurations, 
are presented i n  tab les  I11 t o  V I .  
t w i s t  d is t r ibut ions on the  s ignif icant  aerodynamic parameters are pre- 
sented i n  f igure 8. 
used t o  obtain the  analysis curves of f igure  8. However, a t  M = 0.80 
for the  quadratically twisted wing-body combination, no data were 
recorded a t  0.3 atmosphere so the  data a t  1.0 atmosphere were used. 

The e f fec ts  of the three spanwise 

Generally, the data taken at 0.3 atmosphere were 

DISCUSS ION 

Effects of Three Spanwise Twist Variations 

L i f t  character is t ics . -  The most s ign i f icant  e f f ec t  of t w i s t  on the  
l i f t  character is t ics  i s  a decrement i n  the  l i f t  coeff ic ient  a t  low and 
moderate angles of a t tack  up t o  about 12O. 
and 7 (a ) . )  A s h i f t  of this k t u r e  would be expected since the  average 
angle of a t tack over the span f o r  the  twisted wings i s  less than the  
average angle of a t tack  of the untwisted wing. 
near 0' angle of attack, the l inear  t w i s t  d i s t r ibu t ion  causes the  la rges t  
decrement (about -0.16) i n  l i f t  coefficient;  the quadratic and cubic 
dis t r ibut ions cause succeedingly lesser  decrements. This same t rend i s  
evident through the  Mach number range, although a t  the  higher Mach num- 
bers t he  magnitude of  the decrement caused by the t w i s t  diminished 
s l igh t ly .  With increases i n  angle of a t tack above 8 O ,  the  decrement i n  
l i f t  coefficient due t o  t w i s t  diminishes qui te  rapidly. A t  a Mach num- 
ber of 0.80 and an angle of a t tack  of 12O, f o r  example, t he  decrement 
due t o  the l inear  t w i s t  d i s t r ibu t ion  i s  -0.06 i n  l i f t  coeff ic ient  as 
compared t o  -0.16 at Oo noted previously. Further increases i n  angle 
of attack above 12' cause t h i s  decrement t o  continue t o  diminish u n t i l  
it i s  about zero a t  20' angle of a t tack.  

(See f i g s .  4(a) ,  5(a), 6(a),  

A t  a Mach number of 0.80 

The data of references 1 t o  4 indicate t h a t  the  untwisted wing i s  
more f lex ib le  than the  three twisted wings. Also, a t  a constant angle 
of a t tack the  untwisted wing is  generally carrying a greater load than 
the  twisted w i n g s .  Therefore a t  a given angle of a t tack the  untwisted 
wing experiences larger  aeroelast ic  deflections than the  twisted w i n g s .  
However, the  differences i n  aeroelast ic  def lect ions are not large enough 
t o  obscure the  e f f ec t s  of the  bu i l t - i n  t w i s t .  
i n  aeroelast ic  deflections for  the  data at  0.3 atmosphere used i n  t h i s  

Considering the  differences 
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analysis ,  it i s  estimated t h a t  the  t i p  sections of the twisted wings 
were operating a t  angles of a t t ack  about 5' less than the  t i p  sections 
of the  untwisted wing at the higher angles. 
f l ex ib l e  untwisted wing t w i s t s  about 1' more under load than the twisted 
wings. 

I n  other words, the more 

The e f f e c t s  of the bu i l t - i n  t w i s t  on the l i f t -curve  slopes measured 
i n  the  region of zero l i f t  are shown i n  f igure 8(a). 
responsible f o r  a small increase i n  l i f t -curve  slope up t o  a Mach number 
around 1.0. 

Wing t w i s t  i s  

P i tch  character is t ics . -  W i n g  t w i s t  causes a posi t ive increment i n  
pitching-moment coeff ic ient  as might be expected. 
6(b), and 7(b). ) 
s igni f icant  because it w i l l  r e s u l t  in  lower trim drag f o r  the twisted 
wing configurations. 
l i nea r  t w i s t  d i s t r ibu t ion  causes the la rges t  increment (about 0.050) i n  
pi tching moment ( f i g s .  4(b) and 5(b) )  j the  quadratic and cubic d i s t r i -  
butions cause succeedingly lesser  increments. This trend, which i s  
exhibited throughout the Mach number range generally disappears a t  l i f t  
coeff ic ients  near those of the  unstable break i n  the  pitching-moment 
curves. The charac te r i s t ics  of the  unstable break f o r  the  untwisted 
and twisted w i n g s  are generally very similar although the onset i s  
usual ly  delayed t o , a  higher l i f t  coefficient f o r  the  twisted w i n g s .  

(See f i g s .  4(b), 5(b),  
This posi t ive increment i n  the  pitching moment i s  

A t  a Mach number of 0.80 near zero l i f t ,  the 

The e f f e c t s  of t w i s t  on the s ta t ic- longi tudinal-s tabi l i ty  parameter 
near zero l i f t  a re  shown i n  figure 8(a). 
decrease i n  ( & , & C L ) , ~ ~  a t  the lower Mach numbers, t h i s  e f f ec t  

diminishing a t  the higher Mach numbers. 

Wing t w i s t  causes a small 

Drag character is t ics . -  The e f fec ts  of t w i s t  on the  drag character- 
The drag-due-to-lift f ac to r  i s t i c s  a r e  shown i n  f igures  8 (b )  and 8( c ) .  

~ C D / & L *  
coef f ic ien ts  from minimum drag up t o  about 0.4. 
f ac to r  f o r  f u l l  leading-edge suc t ion  a t  subsonic speeds l/d i s  
shown f o r  reference. The w i n g  t w i s t  has very l i t t l e  e f f ec t  on the  drag- 
due-to- l i f t  f ac to r  over the  Mach number range. However, it i s  respon- 
s ib l e  f o r  an increase i n  the  minimum drag at a l l  Mach numbers. This 
increase i n  minimum drag r e s u l t s  i n  decreases i n  the  maximum l i f t -d rag  
r a t i o  of about 1.0 a t  subsonic speeds and about 0.4 at supersonic speeds 
( f i g .  8 ( c ) ) .  However, the decrease in  maximum l i f t -d rag  r a t i o  might be 
more than compensated f o r  by the  gains i n  trimmed l i f t -d rag  r a t i o  asso- 
c ia ted with the posi t ive pitching-moment increment previously noted. 
Wing t w i s t  increased the l i f t  coefficient f o r  maximum l i f t -d rag  r a t i o  
over the Mach number range. 

on figure 8(b)  was obtained using experimental data a t  l i f t  
The d ragdue - to - l i f t  

( See f i g .  8( c )  . ) 
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Effects of Variations in Stagnation Pressure 

In figures 4 to 7, the flagged symbols represent data obtained at 
a stagnation pressure of 1.0 atmosphere. Doubling the stagnation pres- 
sure doubled the Reynolds number from about 1.4 x 106 to about 2.8 x lo6. 
(See fig. 2.) Transition was fixed during tests at both stagnation pres- 
sures and the data of references 1 to 4 indicate that fixing transition 
tended to minimize the effects of Reynolds number. The calculated aero- 
elastic twist angles in figure 3 show that generally the outboard wing 
sections are operating at a lesser angle of attack at a stagnation pres- 
sure of 1.0 atmosphere than at a stagnation pressure of 0.5 atmosphere L 
because of the differences in dynamic pressures. Therefore, the differ- 5 
ences in the force and moment coefficients in figures 4 to 7 between 7 
data taken at a stagnation pressure of 0.5 atmosphere and 1.0 atmosphere 2 
should be attributed mainly to aeroelastic effects rather than Reynolds 
number effects. 

CONCLUSIONS 

An investigation of the effects of three spanwise twist variations 
on the aerodynamic characteristics in pitch of a thin 45' sweptback 
highly tapered wing at transonic speeds leads to the following 
conclusions : 

1. A linear spanwise twist variation from Oo at the 10-percent semi- 
span to 6O washout at the tip produced an appreciable.pitching-moment 
shift at low lift in the direction to reduce trim drag. Quadratic and 
cubic distributions produced succeedingly lesser pitching-moment shifts. 

2. All spanwise twist variations caused an increase in the minimum 
drag coefficient over the Mach number range which resulted in decreases 
in the untrimmed maximum lift-drag ratio. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., July 23, 1959. 
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TABU I.- BODY ORDINATES 

~ ~~~~ 

Stat ion, 
in. from nose 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 1 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
35.3 

Radius, in .  

0 
.282 

.612 

.743 
,862 
.969 
1.062 
1.150 
1.222 
1.290 
1 - 350 
1.404 
1.452 
1.493 
1.526 
1.552 
1 575 
1.590 
1.602 
1.606 
1.602 

1.578 
1.560 
1.532 
1.501 
1.460 

1.360 
1.300 
1.231 
1.158 
1.076 

.878 

.460 

1.594 

1.414 

.984 

.844 

. 
1 

1 

1 
5 
7 
2 

. 
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TABLE 11.- W I N G  TWIST CHARACTERISTICS 

Section chord line 

-Refemme line 

Typical Section 

Y - 
b/2 

0 

.10 

.12 

- 25 

.40 

.60 

.80 

f 95 

1.80 

~ 

Untwisted 
wing 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Wing with 
l i n e a r  twist 

0 

0 

- 133 

1.000 

2.000 

3.324 

4.667 

5 * 657 

6.000 

Wing with 
quadratic t w i s t  

0 

0 

.003 

.167 

,667 

1.852 

3 - 630 

5 - 352 

6.000 

Wing with 
cubic t w i s t  

0 

0 

. 000 

-028 

.222 

1.029 

2.823 

5.054 

6.000 

11 
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22 0. *.. 

( a )  Untwisted w i n g .  

Figure 3 . -  Variation with angle of  attack of the aeroelast,: t w i s  

angles near the t i p  for the four wings. (Data from 

re f s .  1 t o  4.)  
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of M a c k  4 deg 

(b) W i n g  with linear twist. 

F i w e  3.- Continued. 
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Angle of attack, a, deg 

(c) Wing with quadratic twist. 

Figure 3.- Continued. 
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Angle of ottock ,a,deg 

(a) W i n g  with cubic t w i s t .  

Figure 3. -  Concluded. 
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(b) Pitching-moment coefficient . 
Figure 4.- Continued. 
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Lift coefficient,CL 

( C)  rag coefficient. 

Figure 4.- Concluded. 
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Lift coefficient,CL 

(b) Pitching-moment coefficient. 

Figure 5.- Continued. 
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( e )   rag coefficient. 

Figure 5.- Concluded. 
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Lift coefficient,CL 

(b) Pitching-moment coefficient. 

Figure 6. - Continued. 
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(.b) Pitching-moment coefficient. 

Figure 7.- Continued. 
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Lift coefficlent,q 

( c )   rag coefficient. 

Figure 7.- Concluded. 
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Wing with linear twist 
Wing with quadratic twist 
Wing with cubic twist 

--- 
-- 
--- 

.IO 

,08 

.06 

.04 

Mach number, M 

(a) Lift-curve slope and static-longitudinal-stability parameter. 

Figure 8.- Effects of three spanwise twist variations on the aerodynamic 
parameters. 
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Mach number, M 

(b) Drag characteristics. 

Figure 8.- Continued. 
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Mach number, M 

( C) Maximum lift-drag ratio characteristics. 

Figure 8.- Concluded. 

NASA - Langley Field, Va. L-572 


